By Topic

Laplacian Operator-Based Edge Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xin Wang ; IEEE

Laplacian operator is a second derivative operator often used in edge detection. Compared with the first derivative-based edge detectors such as Sobel operator, the Laplacian operator may yield better results in edge localization. Unfortunately, the Laplacian operator is very sensitive to noise. In this paper, based on the Laplacian operator, a model is introduced for making some edge detectors. Also, the optimal threshold is introduced for obtaining a maximum a posteriori (MAP) estimate of edges

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 5 )