By Topic

On The Problem of Using Guard Traces for High Frequency Differential Lines Crosstalk Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mbairi, F.D. ; Dept. of Microelectron. & Inf. Technol., R. Inst. of Technol., Stockholm ; Siebert, W.P. ; Hesselbom, H.

In this paper, the problem of using guard traces for reducing crosstalk between differential transmission line pairs is investigated, both experimentally and by full-wave electromagnetic (EM) simulations. Different cases of differential lines crosstalk are treated with and without guard trace separation between the differential line pairs. Coated microstrip printed circuit board test structures including thru-reflect-line calibration standards are designed and fabricated on a high frequency laminate material, allowing direct measurement of crosstalk between adjacent differential line pairs in the absence and in the presence of guard traces stitched with vias of regular spacing. The test structures are characterized with mixed-mode scattering parameters using a physical layer test system. Different configurations (of differential line pairs) without guard trace, with floating guard traces (which are terminated and nonterminated) and with a solid guard trace separation are investigated using a High Frequency Structure Simulator (a commercial full-wave 3-D EM simulation tool). The experimental data are compared with the simulation results, and some conclusions and guidelines on the effect of guard traces for alleviating crosstalk between differential transmission lines are presented

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:30 ,  Issue: 1 )