By Topic

Electrical Contact Resistance Theory for Anisotropic Conductive Films Considering Electron Tunneling and Particle Flattening

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robert L. Jackson ; Dept. of Mech. Eng., Auburn Univ., AL ; Lior Kogut

This study models the electrical contact resistance (ECR) between two surfaces separated by an anisotropic conductive film. The film is made up of an epoxy with conductive spherical particles(metallic) dispersed within. In practical situations the particles are often heavily loaded and will undergo severe plastic deformation and may essentially be flattened out. In between the particles and the surfaces there may also be an ultra-thin insulating film (consisting of epoxy) which causes considerable electrical resistance between the surfaces. In the past this effect has been neglected and the predicted ECR was much lower than that measured experimentally. This added resistance is considered using electron tunneling theory. The severe plastic deformation of the spherical particles is modeled using a new expanded elasto-plastic spherical contact model. This work also investigates the effect of compression of the separating epoxy film on the electrical contact resistance. The model finds that the high experimental ECR measurements can be accounted for by including the existence of a thin insulating film through the electron tunneling model

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:30 ,  Issue: 1 )