By Topic

NEMO: A New Implicit-Connection-Graph-Based Gridless Router With Multilayer Planes and Pseudo Tile Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li, Y.-L. ; Nat. Chiao Tung Univ., Hsinchu ; Hsin-Yu Chen ; Chih-Ta Lin

The implicit-connection-graph-based router is superior to the tile-based router in terms of routing graph construction and point querying. However, the implicit connection graph has a higher degree of routing graph complexity. In this paper, a new multilayer implicit-connection-graph-based gridless router called NEMO is developed. Unlike the first implicit-connection-graph-based router that embeds all routing layers onto a routing plane, NEMO constructs a routing plane for each routing layer. Additionally, each routing plane comprises tiles, not an array of grid points with their connecting edges, and consequently, the complexity of the routing problem decreases. Each grid point then represents exactly one tile or its left-bottom corner such that a tile query is equivalent to any point query inside the queried tile, and a grid maze becomes tile propagation. Furthermore, to accelerate path search, continuous space tiles are combined as a pseudo maximum horizontally or vertically stripped tile. Experimental results reveal that NEMO conducts a point-to-point path search around ten times faster than the implicit-connection-graph-based router. General-purpose routing by NEMO also improves routing performance by approximately 1.69times-55.82 times, as compared to previously published works based on a set of commonly used MCNC benchmark circuits

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 4 )