By Topic

Polymer-based Capacitive Micromachined Ultrasonic Transducers (CMUT) for Micro Surgical Imaging Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The design, simulation, and fabrication results for a first generation polymer CMUT are presented. Baseline ANSYS and MATLAB simulations show that the use of a silicon nitride membrane should increase the transmission signal by 28% and the receiver sensitivity by 33%, when compared to a conventional poly silicon membrane. Simulations with a polymer membrane showed a maximum membrane deflection increase up to 67%, at approximately 6.5 MHz, when compared to nitride. Furthermore, the optimal mechanical impendence coupling frequency was lowered to 3.7 MHz for the polymer. These simulations give design guidelines for a CMUT based on geometric parameters such as membrane length and thickness. A CMUT array was then designed and fabricated with a target DC actuation voltage of less than 50V. Also, results showed potential operation of the CMUT up to 10 MHz using a low temperature fabrication process that still results in durable operation

Published in:

Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st IEEE International Conference on

Date of Conference:

18-21 Jan. 2006