By Topic

Statistical inference for general-order-statistics and nonhomogeneous-Poisson-process software reliability models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Joe, H. ; Univ. Coll., London, UK

There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on order statistics or nonhomogeneous Poisson processes, with asymptotic confidence levels for interval estimates of parameters. In particular, interval estimates from these models are obtained for the conditional failure rate of the software, given the data from the debugging process. The data can be grouped or ungrouped. For someone making a decision about when to market software, the conditional failure rate is an important parameter. The use of interval estimates is demonstrated for two data sets that have appeared in the literature

Published in:

Software Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 11 )