By Topic

Autonomous Hyperspectral Target Detection with Quasi-Stationarity Violation at Background Boundaries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schaum, A. ; Naval Res. Lab., Washington, DC

Operational real time hyperspectral reconnaissance systems adaptively estimate multivariate background statistics. Parameter values derived from these estimates feed autonomous onboard detection systems. However, inadequate adaptation occurs whenever an airborne sensor encounters a physical boundary between spectrally distinct regions. The transition area generates excessive false alarms, because standard detection algorithms rely on quasi- stationary models of background statistics. Here we describe a two-mode stochastic mixture model aimed at solving the boundary problem. It exploits deployed signal processing modules to solve a generalized eigenvalue problem, making a threshold test for targets computationally feasible.

Published in:

Applied Imagery and Pattern Recognition Workshop, 2006. AIPR 2006. 35th IEEE

Date of Conference:

11-13 Oct. 2006