By Topic

Interpolation-Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nadia Khaled ; Dept. de Teoria de la Senal y Comunicaciones, Univ. Carlos III de Madrid ; Bishwarup Mondal ; Geert Leus ; Robert W. Heath
more authors

Spatial multiplexing with multi-mode precoding provides a means to achieve both high capacity and high reliability in multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. Multi-mode precoding uses linear transmit precoding that adapts the number of spatial multiplexing data streams or modes, according to the transmit channel state information (CSI). As such, it typically requires complete knowledge of the multi-mode precoding matrices for each subcarrier at the transmitter. In practical scenarios where the CSI is acquired at the receiver and fed back to the transmitter through a low-rate feedback link, this requirement may entail a prohibitive feedback overhead. In this paper, we propose to reduce the feedback requirement by combining codebook-based precoder quantization, to efficiently quantize and represent the optimal precoder on each subcarrier, and multi-mode precoder frequency down-sampling and interpolation, to efficiently reconstruct the precoding matrices on all subcarriers based on the feedback of the indexes of the quantized precoders only on a fraction of the subcarriers. To enable this efficient interpolation-based quantized multimode precoding solution, we introduce (1) a novel precoder codebook design that lends itself to precoder interpolation, across subcarriers, followed by mode selection, (2) a new precoder interpolator and, finally, (3) a clustered mode selection approach that significantly reduces the feedback overhead related to the mode information on each subcarrier. Monte-Carlo bit-error rate (BER) performance simulations demonstrate the effectiveness of the proposed quantized multi-mode precoding solution, at reasonable feedback overhead

Published in:

IEEE Transactions on Wireless Communications  (Volume:6 ,  Issue: 3 )