By Topic

On the Performance of the MIMO Zero-Forcing Receiver in the Presence of Channel Estimation Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cheng Wang ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol. ; Au, E.K.S. ; Murch, R.D. ; Wai Ho Mow
more authors

By employing spatial multiplexing, multiple-input multiple-output (MIMO) wireless antenna systems provide increases in capacity without the need for additional spectrum or power. Zero-forcing (ZF) detection is a simple and effective technique for retrieving multiple transmitted data streams at the receiver. However the detection requires knowledge of the channel state information (CSI) and in practice accurate CSI may not be available. In this letter, we investigate the effect of channel estimation error on the performance of MIMO ZF receivers in uncorrelated Rayleigh flat fading channels. By modeling the estimation error as independent complex Gaussian random variables, tight approximations for both the post-processing SNR distribution and bit error rate (BER) for MIMO ZF receivers with M-QAM and M-PSK modulated signals are derived in closed-form. Numerical results demonstrate the tightness of our analysis

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 3 )