Cart (Loading....) | Create Account
Close category search window

An Improved Power Consumption Circuit of a 5.7 GHz Variable-Gain Low Noise Amplifier (VGLNA) for RF Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, L. ; Dept. of Electr. & Electron. Eng., Univ. Putra Malaysia, Selangor ; Jamuar, S.S. ; Mohd Sidek, R. ; Khatun, S.

A low voltage topology that uses a capacitively coupled resonating element has been introduced using 0.18 mum CMOS technology. The topology utilizes the decoupling scheme to dc isolate circuit elements that are connected in series and share a common dc current. A 5.7 GHz variable-gain low noise amplifier (VGLNA) is presented with simulation results exhibiting a noise figure of 1.02 dB, power gain of 19.41 dB with gain tuning range of 6 dB and IIP3 of -1.11 dBm. The power consumption reported is 12.88 mW at supply of Vdd = 0.7 V for power optimization circuit. Simulation results show that the proposed VGLNA has better noise performance and improved power consumption compared to the conventional cascode VGLNA

Published in:

RF and Microwave Conference, 2006. RFM 2006. International

Date of Conference:

12-14 Sept. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.