By Topic

Analysis of Thermodynamic Models and Performance in RnaPredict - An Evolutionary Algorithm for RNA Folding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wiese, K.C. ; Sch. of Comput. Sci., Simon Fraser Univ., Surrey, BC ; Hendriks, A. ; Deschenes, A.

Two extensive analyzes on RnaPredict, an evolutionary algorithm for RNA folding, are presented here. The first study evaluates the performance of individual nearest neighbor (INN) and individual nearest neighbor-hydrogen bond (INN-HB), two stacking-energy thermodynamic models; the criteria for comparison is the correlation between the prediction accuracy and the free energy of predicted structures for 9 RNA sequences. Despite some variance, a trend between lower free energies and increases in true positive base pairs is apparent. In general, this correlation decreases as the sequence length increases. The second study compares the performance of RnaPredict against the mfold dynamic programming algorithm (DPA) on the same sequences in terms of specificity and sensitivity. The results indicate that RnaPredict has comparable performance to mfold on sub-optimal structures, and outperforms mfold's minimum free energy structures

Published in:

Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB '06. 2006 IEEE Symposium on

Date of Conference:

28-29 Sept. 2006