By Topic

Performance Analysis of Joint Adaptive Modulation and Diversity Combining Over Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong-Chuan Yang ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC ; Belhaj, N. ; Alouini, M.-S.

Both adaptive modulation and diversity combining represent important enabling techniques for future generations of wireless communication systems. In this paper, capitalizing on recent developments in adaptive combining, we propose three joint adaptive modulation and diversity combining (AMDC) schemes. With these schemes, the modulation mode and diversity combiner structure are adaptively determined based on the fading channel condition and error-rate requirement. We accurately analyze these three AMDC schemes in terms of processing power consumption, spectral efficiency, and error-rate performance. Selected numerical examples show that the proposed AMDC systems meet the target error-rate requirement while achieving high spectral efficiency with low processing power consumption

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 3 )