By Topic

A Practical Scheme for Wireless Network Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gowaikar, R. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA ; Dana, A.F. ; Hassibi, B. ; Effros, M.

In many problems in wireline networks, it is known that achieving capacity on each link or subnetwork is optimal for the entire network operation. In this paper, we present examples of wireless networks in which decoding and achieving capacity on certain links or subnetworks gives us lower rates than other simple schemes, like forwarding. This implies that the separation of channel and network coding that holds for many classes of wireline networks does not, in general, hold for wireless networks. Next, we consider Gaussian and erasure wireless networks where nodes are permitted only two possible operations: nodes can either decode what they receive (and then re-encode and transmit the message) or simply forward it. We present a simple greedy algorithm that returns the optimal scheme from the exponential-sized set of possible schemes. This algorithm will go over each node at most once to determine its operation, and hence, is very efficient. We also present a decentralized algorithm whose performance can approach the optimum arbitrarily closely in an iterative fashion

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 3 )