By Topic

Transmission of Force Sensation by Environment Quarrier Based on Multilateral Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Katsura, S. ; Dept. of Electr. Eng., Nagaoka Univ. of Technol. ; Ohnishi, K. ; Ohishi, K.

In recent years, realization of a haptic system has been strongly desired in the fields of medical treatment and expert's skill acquisition. The bandwidth of force sensing and friction compensation are very important problems for reproduction of vivid force sensation. In this paper, an environment quarrier is proposed for bilateral teleoperation instead of force sensors. The environment quarrier is a novel force-sensing method that consists of a twin robot system. Two of the same type of robot are required and they are controlled in the same position, velocity, and acceleration by bilateral acceleration control based on a disturbance observer. One robot is in contact motion and the other is unconstrained. The purity of external force is obtained by subtracting the disturbance torque in the unconstrained robot from the constrained one. The environment quarrier can observe the external force with high bandwidth and friction compensation. In this paper, the idea of multilateral control is introduced for attainment of simultaneity. Furthermore, this paper shows the controller design of the multilateral control in the modal space. The experimental results show the viability of the proposed method

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )