By Topic

ECG Beat Detection Using a Geometrical Matching Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In the framework of the electrocardiography (ECG) signals, this paper describes an original approach to identify heartbeat morphologies and to detect R-wave events. The proposed approach is based on a "geometrical matching" rule evaluated using a decision function in a local moving-window procedure. The decision function is a normalized measurement of a similarity criterion comparing the windowed input signal with the reference beat-pattern into a nonlinear-curve space. A polynomial expansion model describes the reference pattern. For the curve space, an algebraic-fitting distance is built according to the canonical equation of the unit circle. The geometrical matching approach operates in two stages, i.e., training and detection ones. In the first stage, a learning-method based on genetic algorithms allows us estimating the decision function from training beat-pattern. In the second stage, a level-detection algorithm evaluates the decision function to establish the threshold of similarity between the reference pattern and the input signal. Finally, the findings for the MIT-BIH Arrhythmia Database present about 98% of sensitivity and 99% of positive predictivity for the R-waves detection, using low-order polynomial models

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 4 )