Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Noise Cancellation Signal Processing Method and Computer System for Improved Real-Time Electrocardiogram Artifact Correction During MRI Data Acquisition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A system was developed for real-time electrocardiogram (ECG) analysis and artifact correction during magnetic resonance (MR) scanning, to improve patient monitoring and triggering of MR data acquisitions. Based on the assumption that artifact production by magnetic field gradient switching represents a linear time invariant process, a noise cancellation (NC) method is applied to ECG artifact linear prediction. This linear prediction is performed using a digital finite impulse response (FIR) matrix, that is computed employing ECG and gradient waveforms recorded during a training scan. The FIR filters are used during further scanning to predict artifacts by convolution of the gradient waveforms. Subtracting the artifacts from the raw ECG signal produces the correction with minimal delay. Validation of the system was performed both off-line, using prerecorded signals, and under actual examination conditions. The method is implemented using a specially designed Signal Analyzer and Event Controller (SAEC) computer and electronics. Real-time operation was demonstrated at 1 kHz with a delay of only 1 ms introduced by the processing. The system opens the possibility of automatic monitoring algorithms for electrophysiological signals in the MR environment

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 4 )