Cart (Loading....) | Create Account
Close category search window

Itô–Volterra Optimal State Estimation With Continuous, Multirate, Randomly Sampled, and Delayed Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huichai Zhang ; Intel Corp., Chandler, AZ ; Basin, M.V. ; Skliar, M.

The optimal filter for continuous, linear, stochastic, time-varying systems described by the Itocirc-Volterra equations with discontinuous measure is derived. With an appropriately selected measure, the result is applicable to a wide range of observation processes, including the hybrid case of observations formed by an arbitrary combination of continuous and discrete measurements, which may be sampled with a priori unknown, changing, and, possibly, random rates and delays. The simultaneous presence of continuous and sampled measurements causes impulsive discontinuity in the inputs of the optimal filter equations, which leads to a discontinuous change in state estimates every time a sampled measurement becomes available. Using the theory of vibrosolutions, the explicit and unique expressions for the jumps in state estimates and estimation error covariance are derived. Several examples illustrate the procedure of modeling hybrid measurement systems by selecting an appropriate discontinuous measure. We further show that the Itocirc-Volterra model and the main result of the paper can be specialized to several important cases, including state space systems, for which we recover several known state estimation results, and derive a novel optimal filter for continuous LTV systems with an arbitrary combination of continuous and delayed sampled measurements. This optimal filter updates the state estimates for incoming measurements as soon as they become available and does not require prior knowledge of sampling instants and delays, which makes it applicable when deterministic and random changes in sampling and delays are present. Several computational examples demonstrate the implementation of the developed filter and compare its performance to the traditional alternatives using Monte-Carlo simulations

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.