By Topic

An acquisition of operator's rules for collision avoidance using fuzzy neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I. Hiraga ; Dept. of Inf. Electron., Nagoya Univ., Japan ; T. Furuhashi ; Y. Uchikawa ; S. Nakayama

The procedure for acquiring control rules to improve the performance of control systems has received considerable attention previously. This paper deals with a collision avoidance problem in which the controlled object is a ship with inertia which must avoid collision with a moving object. It has proven to be difficult to obtain collision avoidance rules, i.e., steering rules and speed control rules, which coincide with the operator's knowledge. This paper shows that rules of this type can be acquired directly from observational data using fuzzy neural networks (FNNs). This paper also shows that the FNN can obtain portions of the fuzzy rules for the inferences of the static and dynamic degrees of danger and the decision table based on the degrees of danger to avoid the moving obstacle

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:3 ,  Issue: 3 )