By Topic

Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Tanaka ; Dept. of Mech. Syst. Eng., Kanazawa Univ., Japan ; M. Sano ; H. Watanabe

Modeling and control of carbon monoxide (CO) concentration using a neuro-fuzzy technique are discussed. A self-organizing fuzzy identification algorithm (SOFIA) for identifying complex systems such as CO concentration is proposed. The main purpose of SOFIA is to reduce the computational requirement for identifying a fuzzy model. In particular, the authors simplify a procedure for finding the optimal structure of fuzzy partition. The δ rule, which is a basic learning method in neural networks, is used for parameter identification of a fuzzy model. SOFIA consists of four stages which effectively realize structure identification and parameter identification. The procedure of SOFIA is concretely demonstrated by a simple example which has been used in some modeling exercises. The identification result shows effectiveness of SOFIA. Next, the authors apply SOFIA to a prediction problem for CO concentration in the air at the busiest traffic intersection in a large city of Japan. Prediction results show that the fuzzy model is much better than a linear model. Furthermore, the authors simulate a control system for keeping CO concentration at a constant level by using the identified fuzzy model. A self-learning method for adaptively modifying controller parameters by δ rule is introduced because the dynamics of real CO concentration system changes gradually over a long period of time. Two self-learning controllers are designed in this simulation. One is a self-learning linear PI controller. The other is a self-learning fuzzy PI controller. The authors investigate robustness and adaptability of this control system for disturbance and parameter perturbation of the CO concentration model. Simulation results show that the self-learning fuzzy controller is more robust and adaptive

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:3 ,  Issue: 3 )