By Topic

Image classification using spectral and spatial information based on MRF models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yamazaki, T. ; Commun. Res. Lab., Kansai Adv. Res. Center, Kobe, Japan ; Gingras, D.

A new criterion for classifying multispectral remote sensing images or textured images by using spectral and spatial information is proposed. The images are modeled with a hierarchical Markov Random Field (MRF) model that consists of the observed intensity process and the hidden class label process. The class labels are estimated according to the maximum a posteriori (MAP) criterion, but some reasonable approximations are used to reduce the computational load. A stepwise classification algorithm is derived and is confirmed by simulation and experimental results

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 9 )