By Topic

Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. C. Brailean ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; A. K. Katsaggelos

We develop a recursive model-based maximum a posteriori (MAP) estimator that simultaneously estimates the displacement vector field (DVF) and the intensity field from a noisy-blurred image sequence. Current motion-compensated spatio-temporal noise filters treat the estimation of the DVF as a preprocessing step. Generally, no attempt is made to verify the accuracy of these estimates prior to their use in the filter. By simultaneously estimating these two fields, we establish a link between the two estimators. It is through this link that the DVF estimate and its corresponding accuracy information are shared with the other intensity estimator, and vice versa. To model the DVF and the intensity field, we use coupled Gauss-Markov (CGM) models. A CGM model consists of two levels: an upper level, which is made up of several submodels with various characteristics, and a lower level or line field, which governs the transitions between the submodels. The CGM models are well suited for estimating the displacement and intensity fields since the resulting estimates preserve the boundaries between the stationary areas present in both fields. Detailed line fields are proposed for the modeling of these boundaries, which also take into account the correlations that exist between these two fields. A Kalman-type estimator results, followed by a decision criterion for choosing the appropriate set of line fields. Several experiments using noisy and noisy-blurred image sequences demonstrate the superior performance of the proposed algorithm with respect to prediction error and mean-square error

Published in:

IEEE Transactions on Image Processing  (Volume:4 ,  Issue: 9 )