By Topic

Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. A. Webster ; Center for Opt. Technol., Lehigh Univ., Bethlehem, PA ; R. M. Pafchek ; A. Mitchell ; T. L. Koch

We report the first experimental observation in the optical domain of a dramatic width-dependent lateral leakage loss behavior for the TM-like mode of tight vertical confinement ridge waveguides formed in silicon-on-insulator. The lateral leakage loss displays a series of sharp cyclic minima at precise waveguide widths, and appears to be inherent to waveguide geometries of central importance to a wide variety of active devices in silicon photonics requiring lateral electrical access. This behavior is not predicted by the often-used effective-index-based methods, but is understood phenomenologically and also compared to prior numerical analysis and predictions of leaky mode behavior. It is shown that TM-like mode operation, critical to the operation of some active component designs, will require precision control of waveguide dimensions to achieve high performance

Published in:

IEEE Photonics Technology Letters  (Volume:19 ,  Issue: 6 )