By Topic

Fast and Stable Bayesian Image Expansion Using Sparse Edge Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raj, A. ; Center for Imaging of Neurodegenerative Diseases, California Univ., San Francisco, CA ; Thakur, K.

Smoothness assumptions in traditional image expansion cause blurring of edges and other high-frequency content that can be perceptually disturbing. Previous edge-preserving approaches are either ad hoc, statistically untenable, or computationally unattractive. We propose a new edge-driven stochastic prior image model and obtain the maximum a posteriori (MAP) estimate under this model. The MAP estimate is computationally challenging since it involves the inversion of very large matrices. An efficient algorithm is presented for expansion by dyadic factors. The technique exploits diagonalization of convolutional operators under the Fourier transform, and the sparsity of our edge prior, to speed up processing. Visual and quantitative comparison of our technique with other popular methods demonstrates its potential and promise

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 4 )