By Topic

Probabilistic Class Histogram Equalization for Robust Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youngjoo Suh ; Sch. of Eng., Inf. & Commun. Univ., Daejeon ; Mikyong Ji ; Hoirin Kim

In this letter, a probabilistic class histogram equalization method is proposed to compensate for an acoustic mismatch in noise robust speech recognition. The proposed method aims not only to compensate for the acoustic mismatch between training and test environments but also to reduce the limitations of the conventional histogram equalization. It utilizes multiple class-specific reference and test cumulative distribution functions, classifies noisy test features into their corresponding classes by means of soft classification with a Gaussian mixture model, and equalizes the features by using their corresponding class-specific distributions. Experiments on the Aurora 2 task confirm the superiority of the proposed approach in acoustic feature compensation

Published in:

Signal Processing Letters, IEEE  (Volume:14 ,  Issue: 4 )