By Topic

Background Subtraction Using Markov Thresholds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Migdal, Joshua ; Massachusetts Institute of Technology, Cambridge, Massachusetts ; Grimson, W.E.L.

Many video surveillance and identification applications need to find moving objects in the field of view of a stationary camera. A popular method for obtaining these silhouettes is through the process of background subtraction. We present a novel method for comparing image frames to the model of the stationary background that exploits the spatial and temporal dependencies that objects in motion impose on their images. We achieve this through the development and use of Markov random fields of binary segmentation variates. We show that the MRF approach produces more accurate and visually appealing silhouettes that are less prone to noise and background camouflaging effects than traditional per-pixel based methods. Results include visual examination of silhouettes, comparisons against hand-segmented data, and an analysis of the effects of various silhouette extraction techniques on gait recognition performance.

Published in:

Application of Computer Vision, 2005. WACV/MOTIONS '05 Volume 1. Seventh IEEE Workshops on  (Volume:2 )

Date of Conference:

5-7 Jan. 2005