By Topic

On Z4-duality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Recently the notion on binary codes called Z4-linearity was introduced. This notion explains why Kerdock codes and Delsarte-Goethals codes admit formal duals in spite of their nonlinearity. The “Z4-duals” of these codes (called “Preparata” and “Goethals” codes) are new nonlinear codes which admit simpler decoding algorithms than the previously known formal duals (the generalized Preparata and Goethals codes). We prove, by using the notion of exact weight enumerator, that the relationship between any Z4-linear code and its Z4 -dual is stronger than the standard formal duality and we deduce the weight enumerators of related generalized codes

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 5 )