By Topic

An Adaptive Control for UPS to Compensate Unbalance and Harmonic Distortion Using a Combined Capacitor/Load Current Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Escobar, G. ; Div. of Appl. Math., Res. Inst. of Sci. & Technol. of San Luis Potosi ; Mattavelli, P. ; Stankovic, A.M. ; Valdez, A.A.
more authors

This paper investigates the control of an uninterruptible power supply (UPS) using a combined measurement of capacitor and load currents in the same current sensor arrangement. The purpose of this combined measurement is, on one hand, to reach a similar performance as that obtained in the inductor current controller with load current feedforward and, on the other hand, to easily obtain an estimate of the inductor current for overcurrent protection capability. Based on this combined current measurement, a voltage controller based on resonant harmonic filters is investigated in order to compensate for unbalance and harmonic distortion on the load. Adaptation is included to cope with uncertainties in the system parameters. It is shown that after transformations the proposed controller gets a simple and practical form that includes a bank of resonant filters, which is in agreement with the internal model principle and corresponds to similar approaches proposed recently. The controller is based on a frequency-domain description of the periodic disturbances, which include both symmetric components, namely, the negative and positive sequence. Experimental results on the output stage of a three-phase three-wire UPS are presented to assess the performance of the proposed algorithm

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )