By Topic

Input-Current Distortion of CCM Boost PFC Converters Operated in DCM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

When power-factor correction (PFC) converters designed for operation in continuous-conduction mode (CCM) at full power are operated at reduced load, operation in discontinuous-conduction mode (DCM) occurs in a zone that is close to the crossover of the line voltage. This zone will gradually expand with decreasing load to finally encompass the entire line cycle. Whereas, in CCM, the parasitic capacitances of the switches only cause switching losses, in DCM, they are a source of converter instability, resulting in significant input-current distortion. In this paper, this source of input-current distortion is analyzed, and a solution is proposed. Experimental results are obtained using a digitally controlled boost PFC converter, which is designed to operate in CCM for 1 kW

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 2 )