By Topic

Programmable Gm– C Filters Using Floating-Gate Operational Transconductance Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chawla, R. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Adil, F. ; Serrano, G. ; Hasler, P.E.

We present programmable, fully differential Gm-C second-order sections (SOS) showing tunability over a wide range of frequencies. The SOSs use floating-gate operational transconductance amplifiers (FG-OTAs) to realize tunability. We present two FG programmable OTAs. The OTAs have a pFET input stage and employ current mirror topology. An FG common-mode feedback (CMFB) circuit as well as a conventional CMFB circuit is described for use with these OTAs. Their performance is compared. Expressions are derived for the differential and common-mode frequency response of the OTAs. Typical simulation and experimental results are shown for prototypes fabricated in a 0.5-mum CMOS process available through MOSIS. The prototypes operate from a single 3.3-V supply with typical bias currents in the 10-100-nA range. We present experimental results showing frequency-and Q-tuning for a low-pass SOS (LPSOS) and a bandpass SOS (BPSOS) designed using these FG-OTAs also fabricated in a 0.5-mum CMOS process. Measured 1-dB compression for LPSOS and BPSOS are -15 and -11 dBm, respectively

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 3 )