By Topic

Tissue spectroscopy with electrical impedance tomography: computer simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Griffiths, H. ; Inst. Nat. de la Sante et de la Recherche Med., Lyon, France

A method is proposed by which bioelectrical spectroscopy could be combined with electrical impedance tomography (EIT) to provide noninvasive characterization of tissue. Multifrequency (2-200 kHz) EIT measurements were simulated with a numerical model for a volume of porcine liver immersed in an electrolytic tank. From the reconstructed EIT images the tissue characterization method was then applied enabling a plot of complex resistivity to be drawn for any selected pixel in the image. Simulations were performed for a small volume of degraded tissue embedded in the normal tissue to examine its effect on the derived spectroscopic parameters. The method could have an application in transplant surgery for screening organs for tissue degradation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:42 ,  Issue: 9 )