Cart (Loading....) | Create Account
Close category search window

Optimum Design for RF-to-Optical Up-Converter in Coherent Optical OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Tang ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic. ; Shieh, William ; Xingwen Yi ; Evans, R.

In this letter, we conduct analysis on the optimum design for RF-to-optical up-converter in coherent optical OFDM systems using an optical I/Q modulator. We first derive closed-form expressions for the nonlinearity in the optical I/Q modulator, represented by two-tone intermodulation products as a function of the bias point and modulation index. Additionally, we perform a numerical simulation to identify Q-penalty and the excess modulation insertion loss under various transmitter conditions. We find that in contrast to the direct-detected system, the optimal modulator bias point for the coherent system is pi, where the Q-penalty and excess loss are minimized

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 7 )

Date of Publication:

April1, 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.