By Topic

Technical and Patient Performance Using a Virtual Reality-Integrated Telerehabilitation System: Preliminary Finding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deutsch, J.E. ; Sch. of Health Related Professions, Univ. of Medicine & Dentistry of New Jersey, Newark, NJ ; Lewis, J.A. ; Burdea, G.

Telerehabilitation is the provision of rehabilitation services at a distance by a therapist at a remote location. Integration with virtual reality (VR) is a relatively new addition to this field. This paper describes the technical and patient performance of a telerehabilitation application the remote console (ReCon) that is integrated with a VR system. The VR system consists of the Rutgers Ankle prototype robot, a local PC which is connected with a remote PC connected over the Internet. Six individuals in the chronic phase poststroke participated in a four week training program. They used the robot to interact with two VR simulations, while the therapist was in the same room during the first three weeks or in another room during the fourth week. Technical and patient performance was assessed in the transition from the third to the fourth week of training. Technical performance of the system was assessed based on bandwidth and lag of message transmission, which were found to be suitable for clinic-to-clinic communication. Patient performance (in terms of accuracy of ankle movement, exercise duration and training efficiency, mechanical power of the ankle, and number of repetitions) did not decrease during telerehabilitation in the fourth week. These preliminary findings over a short telerehabilitation intervention support the feasibility of remote monitoring of VR-based telerehabilitation without adverse effects on patient performance

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 1 )