By Topic

Distributed Control of Autonomous Swarms by Using Parallel Simulated Annealing Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Xi ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD ; Baras, J.S.

In early work of the authors, it was shown that Gibbs sampler based sequential annealing algorithm could be used to achieve self-organization in swarm vehicles based only on local information. However, long travelling time presents barriers to implement the algorithm in practice. In this paper we study a popular acceleration approach, the parallel annealing algorithm, and its convergence properties. We first study the convergence and equilibrium properties of the synchronous parallel sampling algorithm. A special example based on a battle field scenario is then studied. Sufficient conditions that the synchronous algorithm leads to desired configurations (global minimizers) are derived. While the synchronized algorithm reduces travelling time, it also raises delay and communication cost dramatically, in order to synchronize moves of a large group of vehicles. An asynchronous version of the parallel sampling algorithm is then proposed to solve the problem. Convergence properties of the asynchronous algorithm are also investigated

Published in:

Control and Automation, 2006. MED '06. 14th Mediterranean Conference on

Date of Conference:

28-30 June 2006