By Topic

Systematic design of programmable operational amplifiers with noise-power trade-off

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Bronskowski ; Inst. of Nanoelectronics, Hamburg Univ. of Technol. ; D. Schroeder

A methodology for the systematic design of a programmable operational amplifier (opamp) is described. With this methodology, the opamp is programmable concerning noise and power consumption while keeping the stability for the whole operation range with a constant phase margin of phires=70deg. The theoretical model is developed with the help of the transfer characteristics of the opamp determining the degrees of freedom. Experimental results for a 0.35-mum CMOS opamp show either ultra low-noise of 2 nV/radicHz or low-power consumption of 140 muW while keeping the opamp stable over the whole range of programmability

Published in:

IET Circuits, Devices & Systems  (Volume:1 ,  Issue: 1 )