By Topic

Homomorphic Analysis and Modeling of ECG Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ivaturi S. N. Murthy ; Department of Electrical Engineering, Indian Institute of Science ; Mandayam R. Rangaraj ; K. Jayaram Udupa ; A. K. Goyal

Homomorphic analysis and pole-zero modeling of electrocardiogram (ECG) signals are presented in this paper. Four typical ECG signals are considered and deconvolved into their minimum and maximum phase components through cepstral filtering, with a view to study the possibility of more efficient feature selection from the component signals for diagnostic purposes. The complex cepstra of the signals are linearly filtered to extract the basic wavelet and the excitation function. The ECG signals are, in general, mixed phase and hence, exponential weighting is done to aid deconvolution of the signals. The basic wavelet for normal ECG approximates the action potential of the muscle fiber of the heart and the excitation function corresponds to the excitation pattern of the heart muscles during a cardiac cycle. The ECG signals and their components are pole-zero modeled and the pole-zero pattern of the models can give a clue to classify the normal and abnormal signals. Besides, storing only the parameters of the model can result in a data reduction of more than 3:1 for normal signals sampled at a moderate 128 samples/s.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:BME-26 ,  Issue: 6 )