By Topic

Optimal System Design for an Implantable CW Doppler Ultrasonic Flowmeter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David M. Di Pietro ; Hewlett-Packard Company, Santa Clara Division ; James D. Meindl

A totally implantable telemetry system utilizing custom micropower monolithic integrated circuits has been developed to measure instantaneous pulsatile blood flow in the major arteries of animals. The device utilizes the Doppler effect at ultrasonic frequencies to achieve a flowmeter possessing small size and weight, low power consumption, inherent accuracy, and long-term stability. The integrated circuit electronics package occupies a volume of 3.8 cc and requires a power consumption of 10 mW from a single 135 volt mercury cell. The volume of the entire implantable flowmeter package is less than 36 cc. As a micro-miniature radio-telemetry system, the flow-meter can be totally implanted within the body, thereby eliminating the need for wires penetrating the skin, a serious problem with "back-pack" flowmeters due to danger of infection. The implantable flow-meter system provides a new and necessary tool for accurate quantitative measurements in the study of cardiovascular disease. It has been used in the study of transplanted heart rejection to monitor blood velocity in the major arteries of doB

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:BME-25 ,  Issue: 3 )