By Topic

Improvement in Arteral Oxygen Control Using Multiple-Model Adaptive Control Procedures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu, Clement ; Department of Biomedical Engineering, Rensselaer Polytechnic Institute ; He, W.G. ; So, James M. ; Roy, Rob
more authors

A computer-based proportional-integral (PI) controller has been developed to control arterial oxygen levels in mechanically ventilated animals. Arterial oxygen saturation is monitored using a noninvasive oximeter and control is effected by adjusting the inspired oxygen fraction. The performance of the feedback system is sensitive to the open-loop gain so that the desired transient specifications can be achieved only by empirical adjustments of the PI controller. Because the open-loop gain includes the animal's response, it may vary with time and with the administration of positive end-expiratory pressure. Multiple-model adaptive control procedures were therefore used to desensitize the system to these variable gains. Computer simulations demonstrated the effectiveness of the algorithm over a wide variation of plant parameters. A comparison to a fixed, well-tuned proportional-integral controller showed an improvement in the regulatory response to a step disturbance. Animal experiments confirmed the feasibility of using multiple-model adaptive control to regulate arterial oxygen saturation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:BME-34 ,  Issue: 8 )