By Topic

Spatial Filtering of Noninvasive Multielectrode EMG: Part I-Introduction to Measuring Technique and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Reucher, Harald ; Helmholtz-Institute for Biomedical Engineering, Technical University Aachen ; Rau, Gunter ; Silny, J.

Complementary to its conventional applications, surface EMG is also suited to gain more detailed information on the functional state of a muscle, when measurement configurations with smaller pickup areas are used. A new category of suitable measurement configurations is obtained by application of the spatial filtering principle to electromyography. In a spatial filter unit, the signals of several recording electrodes are combined to form one output signal channel. The filter characteristic is determined by the weighting factors used and by the geometrical arrangement of the electrodes. Extended multielectrode arrays and multichannel recording make possible the detection of correlated excitations at different sites of the muscle. Even in high levels of muscle contraction, single motor unit impulses that are suitably shaped by filtering can be repeatedly recognized in the surface EMG signal. In clinical studies, pathologically shaped impulses have been identified indicating multiple innervation zones. The initiation and the propagation of excitation within single motor units can be detected with improved accuracy even from very small muscles.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:BME-34 ,  Issue: 2 )