By Topic

Autoregressive Modeling of Surface EMG and Its Spectrum with Application to Fatigue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paiss, Omry ; Department of Electrical Engineering, Technion-Israel Institute of Technology ; Inbar, G.F.

The following is an investigation of the ability of the autoregressive (AR) model to describe the spectrum of the processes underlying the recorded surface EMG. Surface EMG (SEMG) spectrum is influenced by two major factors; one attributed to the motor units (MU) firing rate and the second, the higher frequency one, to the morphology of the action potentials (AP) traveling along the muscle fiber. In the present paper, SEMG measurements were carried out on the biceps brachii muscle with fixed surface electrodes arrangement and isotonic conditions. Sufficient averaging of 0.5 s segments enabled the identification of the low-frequency peak related to the firing rates of the MU's.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:BME-34 ,  Issue: 10 )