Cart (Loading....) | Create Account
Close category search window

The Effects of Driving Frequency and Antenna Length on Power Deposition Within a Microwave Antenna Array Used for Hyperthermia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Trembly, B.S. ; Thayer School of Engineering, Dartmouth College

The theory of the linear, insulated antenna embedded in an electrically dense medium is applied to microwave antennas used for hyperthermia cancer therapy. The pattern of power deposition is computed for a square array of four antennas with a side length of 3 cm under the assumption of no coupling among antennas. The driving frequency is set to seven values between 300 and 915 MHz, and the antenna halflength is set to three values: 3 cm, 6 cm, and the resonant value.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:BME-32 ,  Issue: 2 )

Date of Publication:

Feb. 1985

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.