By Topic

Measurement of Ultrasonic Attenuation Within Regions Selected from B-Scan Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parker, K.J. ; Department of Electrical Engineering, University of Rochester ; Waag, R.C.

This paper describes the calculation of absolute ultrasonic attenuation as a function of frequency by processing backscattered signals obtained from a clinical imaging instrument. The signal processing steps are developed from a mathematical model of scattering in an attenuating medium with random inhomogeneities. Attenuation data are derived from the imaging system by recording amplitude-compressed ultrasonic echo waveforms along with transducer position information and time-varying gain values. The input-output characteristics of the receiver are employed to remove the effects of compression and gain. Attenuation values are calculated for selected regions within scans of two tissue phantoms and a normal breast. The values agree with other independent measurements and illustrate the requirements for incorporating quantitative attenuation measurements with clinical imaging.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:BME-30 ,  Issue: 8 )