By Topic

Iterative Reconstruction-Reprojection: An Algorithm for Limited Data Cardiac-Computed Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Menahem Nassi ; Diasonics, Inc., Milpitas, CA 95305 and the Department of Radiology, Stanford University ; William R. Brody ; Barry P. Medoff ; Albert Macovski

Cardiac X-ray computed tomography (CT) has been limited due to scanning times which are considerably longer (1 s) than required to resolve the beating heart (0.1 s). The otherwise attractive convolution-backprojection algorithm is not suited for CT image reconstruction from measurements comprising an incomplete set of projection data. In this paper, an iterative reconstruction-reprojection (IRR) algorithm is proposed for limited projection data CT image reconstruction. At each iteration, the missing views are estimated based on reprojection, which is a software substitute for the scanning process. The standard fan-beam convolution-backprojection algorithm is then used for image reconstruction. The proposed IRR algorithm enables the use of convolution-backprojection in limited angle of view and in limited field of view CT cases. The potential of this method for cardiac CT reconstruction is demonstrated using computer simulated data.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:BME-29 ,  Issue: 5 )