By Topic

Application of Artificial Neural Networks to Broadband Antenna Design Based on a Parametric Frequency Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youngwook Kim ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX ; Keely, S. ; Ghosh, J. ; Hao Ling

An artificial neural network (ANN) is proposed to predict the input impedance of a broadband antenna as a function of its geometric parameters. The input resistance of the antenna is first parameterized by a Gaussian model, and the ANN is constructed to approximate the nonlinear relationship between the antenna geometry and the model parameters. Introducing the model simplifies the ANN and decreases the training time. The reactance of the antenna is then constructed by the Hilbert transform from the resistance found by the neuromodel. A hybrid gradient descent and particle swarm optimization method is used to train the neural network. As an example, an ANN is constructed for a loop antenna with three tuning arms. The antenna structure is then optimized for broadband operation via a genetic algorithm that uses input impedance estimates provided by the trained ANN in place of brute-force electromagnetic computations. It is found that the required number of electromagnetic computations in training the ANN is ten times lower than that needed during the antenna optimization process, resulting in significant time savings

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 3 )