By Topic

Design and Evaluation of an Active Antenna for a 29–47 MHz Radio Telescope Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ellingson, S.W. ; Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ. ; Simonetti, J.H. ; Patterson, C.D.

The eight-meter-wavelength transient array (ETA) is a new radio telescope consisting of 12 dual-polarized, 38 MHz-resonant dipole elements which are individually instrumented, digitized, and analyzed in an attempt to detect rare and as-yet undetected single dispersed pulses believed to be associated with certain types of astronomical explosions. This paper presents the design and demonstrated performance of ETA's dipole antennas. An inverted V-shaped design combined with a simple and inexpensive active balun yields sensitivity which is limited only by the external noise generated by the ubiquitous Galactic synchrotron emission over a range greater than the 27-49 MHz design range. The results confirm findings from a recent theoretical analysis, and the techniques described here may have applications in other problems requiring in situ evaluation of large low-frequency antennas

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 3 )