By Topic

A Non-orthogonal Distributed Space-Time Coded Protocol Part I: Signal Model and Design Criteria

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Susinder Rajan, G. ; Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore ; Sundar Rajan, B.

In this- two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover the GNAF protocol enables the use of sphere decoders at the destination with a non-exponential maximum likelihood (ML) decoding complexity. In part-II, several low decoding complexity code constructions are studied and a lower bound on the diversity-multiplexing gain tradeoff of the GNAF protocol is obtained

Published in:

Information Theory Workshop, 2006. ITW '06 Chengdu. IEEE

Date of Conference:

22-26 Oct. 2006