By Topic

Body Part Detection for Human Pose Estimation and Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mun Wai Lee ; University of Southern California ; Nevatia, R.

Accurate 3-D human body pose tracking from a monocular video stream is important for a number of applications. We describe a novel hierarchical approach for tracking human pose that uses edge-based features during the coarse stage and later other features for global optimization. At first, humans are detected by motion and tracked by fitting an ellipse in the image. Then, body components are found using edge features and used to estimate the 2D positions of the body joints accurately. This helps to bootstrap the estimation of 3D pose using a sampling-based search method in the last stage. We present experiment results with sequences of different realistic scenes to illustrate the performance of the method.

Published in:

Motion and Video Computing, 2007. WMVC '07. IEEE Workshop on

Date of Conference:

Feb. 2007