By Topic

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ting Liu ; Google Inc., Mountain View, CA, USA ; Charles Rosenberg ; Henry A. Rowley

The proliferation of the Web and digital photography have made large scale image collections containing billions of images a reality. Image collections on this scale make performing even the most common and simple computer vision, image processing, and machine learning tasks nontrivial. An example is nearest neighbor search, which not only serves as a fundamental subproblem in many more sophisticated algorithms, but also has direct applications, such as image retrieval and image clustering. In this paper, we address the nearest neighbor problem as the first step towards scalable image processing. We describe a scalable version of an approximate nearest neighbor search algorithm and discuss how it can be used to find near duplicates among over a billion images

Published in:

Applications of Computer Vision, 2007. WACV '07. IEEE Workshop on

Date of Conference:

Feb. 2007