By Topic

Motion Estimation Using a General Purpose Neural Network Simulator for Visual Attention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Florentin Dorian Vintila ; York University, Toronto Ontario, Canada ; John K Tsotsos

Motion detection and estimation is a first step in the much larger framework of attending to visual motion based on Selective Tuning Model of Visual Attention (Tsotsos, et al., 2002). In order to be able to detect and estimate complex motion in a hierarchical system it is necessary to use robust and efficient methods which encapsulate as much information as possible about the motion together with a measure of reliability of that information. One such method is the orientation tensor formalism which incorporates a confidence measure that propagates into subsequent processing steps. The tensor method is implemented in a neural network simulator which allows distributed processing and visualization of results. As output we obtain information about the moving objects from the scene

Published in:

Applications of Computer Vision, 2007. WACV '07. IEEE Workshop on

Date of Conference:

Feb. 2007