Cart (Loading....) | Create Account
Close category search window

[Inside front cover]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Friedman, R. ; Dept. of Comput. Sci., Technion, Haifa ; Mostefaoui, A. ; Raynal, M.

Unreliable failure detectors are abstract devices that, when added to asynchronous distributed systems, enable solving distributed computing problems (e.g., consensus) that otherwise would be impossible to solve in these systems. This paper focuses on two classes of failure detectors defined by Chandra and Toueg, namely, the classes denoted diamP (eventually perfect) and diamS (eventually strong). Both classes include failure detectors that eventually detect permanently all process crashes, but while the failure detectors of diamP eventually make no erroneous suspicions, the failure detectors of diamS are only required to eventually not suspect a single correct process. Informally, in a one-shot agreement problem, a new problem instance is created each time the processes propose new values to be decided on (e.g., consensus is one-shot). In such a context, this paper addresses the following question related to the comparative power of these classes, namely: "Are there one-shot agreement problems that can be solved in asynchronous distributed systems with reliable links but prone to process crash failures augmented with op, but cannot be solved when those systems are augmented with diamS?" Surprisingly, the paper shows that the answer to this question is "no." An important consequence of this result is that diamP cannot be the weakest class of failure detectors that enables solving one-shot agreement problems in unreliable asynchronous distributed systems

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )

Date of Publication:

April 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.