By Topic

Reconfigured Scan Forest for Test Application Cost, Test Data Volume, and Test Power Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong Xiang ; Sch. of Software, Tsinghua Univ., Beijing ; Kaiwei Li ; Jiaguang Sun ; Fujiwara, H.

A new scan architecture called reconfigured scan forest is proposed for cost-effective scan testing. Multiple scan flip-flops can be grouped based on structural analysis that avoids new untestable faults due to new reconvergent fanouts. The proposed new scan architecture allows only a few scan flip-flops to be connected to the XOR trees. The size of the XOR trees can be greatly reduced compared with the original scan forest; therefore, area overhead and routing complexity can be greatly reduced. It is shown that test application cost, test data volume, and test power with the proposed scan forest architecture can be greatly reduced compared with the conventional full scan design with a single scan chain and several recent scan testing methods

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 4 )